Effect of Phenyl Derivatization on N-halamine Antimicrobial Siloxane Coatings

S. D. Worley,* H. B. Kocer, A. Akdag, R. M. Broughton,
O. Acevedo, and T. S. Huang
Department of Chemistry and Biochemistry
Auburn University

N-Halamine Structures

$$R_1$$
 R_2
 R_3
 R_4
 R_4

Methods of Producing Contact Biocidal Polymers

- Physical blends of active biocides and polymeric moieties
- Polymerization or copolymerization of a biocidal monomer
- Functionalization of a commercial polymer
 - e.g., Bond hydantoin group onto polystyrene as shown in the next figure

Using Polystyrene as the Commercial Polymer: Derivatization to Hydantoinyl PS

Polymers Functionalized with N-halamine Moieties at Auburn University

^{*} Polystyrene, Cellulose, PET, Nylon, Polyurethanes, Polysiloxanes, Rubber

Structure of a Quat/hydantoinyl Siloxane Copolymer

Deposition of the hydantoinyl/quat copolymer onto cellulose and inactivation after chlorination

Siloxanes and model compounds studied in this work

A

$$R_2$$
 R_1
 R_2
 R_1
 R_2
 R_3
 R_4
 R_5
 R_6
 R_7
 R_7
 R_8

B

R₁ / R₂
Methyl / Methyl MM
Methyl / Phenyl MP
Phenyl / Phenyl PP

X=H X=Cl

MMm MMm-Cl

MPm MPm-Cl

PPm PPm-Cl

Antimicrobial efficacies of 5-substituted hydantoinylsiloxanes against E. coli O157:H7; total bacteria: 2.10 x 10⁸ (8.32 logs); chlorine loadings on

the coated swatches (MM-Cl, MP-Cl, PP-Cl) were 0.31, 0.32, and 0.29 %.

Stability toward washing of cotton coated with derivatized hydantoinyl siloxanes (Cl+% remaining)

	MM			MP			PP		
Machine washes	Xa	Ya	\mathbf{Z}^{a}	X	Y	Z	X	Y	Z
0	0.39	0.39		0.38	0.38		0.41	0.41	
5	0.21	0.24	0.07	0.12	0.17	0.10	0.12	0.19	0.17
10	0.16	0.21	0.05	0.06	0.12	0.07	0.09	0.18	0.16
25	0.11	0.13	0.03	0.03	0.08	0.05	0.06	0.14	0.14
50	0.08	0.09	0.03	0.01	0.05	0.04	0.01	0.07	0.06

^a X: Chlorinated before washing, Y: Chlorinated before washing and rechlorinated after washing, Z: Unchlorinated before washing, but chlorinated after washing.

^b The error in the measured CI⁺ weight percentage values was ± 0.01 .

Stability toward UVA light exposure of cotton coated with derivatized hydantoinyl siloxanes (CI+% remaining).

Structures of the synthesized model compounds

	MMm	MPm	PPm
R_1	methyl	methyl	phenyl
\mathbf{R}_2	methyl	phenyl	phenyl

FTIR spectra of the model compounds in the N-H and C-H stretching region

¹H NMR spectra of the model compounds before and after chlorination (the aromatic region; the solvent was acetone-d₆)

5,5-Diphenyl-3-butylhydantoin with Cl bonded at the N_1 position optimized at the B3LYP/6-311+G(2d,p) level of theory

Stability toward repeated UVA light exposure of cotton coated with derivatized hydantoinyl siloxanes MM-Cl and PP-Cl (Cl+% remaining) following a series of rechlorinations

Intramolecular photorearrangement of acyclic N-halamides (1,5-hydrogen atom transfer), the Hoffmann-Loeffler rearrangement

 $R_1 = R_2 = alkyl$

Possible photolytic rearrangements for 3-butyl-1-chlorohydantoin

$$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

%Transmittance

The ¹H NMR spectra of (a) MMm and (b) UVA light-irradiated MMm-Cl; the solvent was CDCl₃

The ¹³C NMR spectra of (a), MMm and (b) UVA-light-irradiated MMm-Cl; the solvent was CDCl₃

GC/MS spectra of (a) MMm and (b) UVA-irradiated

Transition structures at the UB3LYP/6-311++G(2d,p) theory level for the 1,6- and 1,5-hydrogen atom transfers between atoms (A) C_8 and N_1 and (B) C_7 and N_1 in the MMm radical; distances in angstroms

Calculated bond dissociation enthalpy (BDE) for the N_1 -Cl bond in MMm-Cl and activation enthalpies, ΔH^{\ddagger} , for the 1,5- and 1,6-proton transfers in MMm radical^a

	BDE (N ₁ -Cl)	$\Delta \mathbf{H}^{\ddagger}$ (1,5-H)	ΔH^{\ddagger} (1,6-H)
MMm	50.5	52.9	38.2

^a Enthalpies (in kcal/mol) computed at the UB3LYP/6-311++G(2d,p) theory level. 1,5-proton transfer between atoms C_7 and N_1 and 1,6-proton transfer between atoms C_8 and N_1 .

Transition structure at the UB3LYP/6-311++(2d,p) theory level for the cleavage of the 7-chloro-5,5-diphenylhydantoin siloxane model (PPSi-Cl); distances in angstroms

Loss of antimicrobial efficacy from the siloxane surface

CONCLUSIONS

- Phenyl derivatization at the 5-position on the hydantoin ring of an Nchlorohydantoinyl silane or siloxane weakens the N-Cl bond relative to that of the 5,5-dimethyl derivative.
- The bond weakening is probably the result of a through-space interaction between the CI atom and the pi-electron system of the aromatic rings.
- UVA degradation of the hydantoinyl siloxane is caused by homolytic rupture of the N-Cl bond, followed by hydrogen atom transfer from the alkylsilyl chain, resulting in chlorination on the chain, and subsequent cleavage of the hydantoinyl moiety from the surface.
- This process which occurs gradually renders the surface incapable of rechlorination, and hence the gradual loss of antimicrobial efficacy.

ACKNOWLEDGMENT

 This work was supported by the US Air Force.