Effect of Phenyl Derivatization on N-halamine Antimicrobial Siloxane Coatings S. D. Worley,* H. B. Kocer, A. Akdag, R. M. Broughton, O. Acevedo, and T. S. Huang Department of Chemistry and Biochemistry Auburn University #### N-Halamine Structures $$R_1$$ R_2 R_3 R_4 ## Methods of Producing Contact Biocidal Polymers - Physical blends of active biocides and polymeric moieties - Polymerization or copolymerization of a biocidal monomer - Functionalization of a commercial polymer - e.g., Bond hydantoin group onto polystyrene as shown in the next figure ### Using Polystyrene as the Commercial Polymer: Derivatization to Hydantoinyl PS ## Polymers Functionalized with N-halamine Moieties at Auburn University ^{*} Polystyrene, Cellulose, PET, Nylon, Polyurethanes, Polysiloxanes, Rubber ### Structure of a Quat/hydantoinyl Siloxane Copolymer ### Deposition of the hydantoinyl/quat copolymer onto cellulose and inactivation after chlorination ## Siloxanes and model compounds studied in this work A $$R_2$$ R_1 R_2 R_1 R_2 R_3 R_4 R_5 R_6 R_7 R_7 R_8 B R₁ / R₂ Methyl / Methyl MM Methyl / Phenyl MP Phenyl / Phenyl PP X=H X=Cl MMm MMm-Cl MPm MPm-Cl PPm PPm-Cl Antimicrobial efficacies of 5-substituted hydantoinylsiloxanes against E. coli O157:H7; total bacteria: 2.10 x 10⁸ (8.32 logs); chlorine loadings on the coated swatches (MM-Cl, MP-Cl, PP-Cl) were 0.31, 0.32, and 0.29 %. ### Stability toward washing of cotton coated with derivatized hydantoinyl siloxanes (Cl+% remaining) | | MM | | | MP | | | PP | | | |-------------------|------|------|---------------------------|------|------|------|------|------|------| | Machine
washes | Xa | Ya | \mathbf{Z}^{a} | X | Y | Z | X | Y | Z | | 0 | 0.39 | 0.39 | | 0.38 | 0.38 | | 0.41 | 0.41 | | | 5 | 0.21 | 0.24 | 0.07 | 0.12 | 0.17 | 0.10 | 0.12 | 0.19 | 0.17 | | 10 | 0.16 | 0.21 | 0.05 | 0.06 | 0.12 | 0.07 | 0.09 | 0.18 | 0.16 | | 25 | 0.11 | 0.13 | 0.03 | 0.03 | 0.08 | 0.05 | 0.06 | 0.14 | 0.14 | | 50 | 0.08 | 0.09 | 0.03 | 0.01 | 0.05 | 0.04 | 0.01 | 0.07 | 0.06 | ^a X: Chlorinated before washing, Y: Chlorinated before washing and rechlorinated after washing, Z: Unchlorinated before washing, but chlorinated after washing. ^b The error in the measured CI⁺ weight percentage values was ± 0.01 . Stability toward UVA light exposure of cotton coated with derivatized hydantoinyl siloxanes (CI+% remaining). ## Structures of the synthesized model compounds | | MMm | MPm | PPm | |----------------|--------|--------|--------| | R_1 | methyl | methyl | phenyl | | \mathbf{R}_2 | methyl | phenyl | phenyl | ## FTIR spectra of the model compounds in the N-H and C-H stretching region ¹H NMR spectra of the model compounds before and after chlorination (the aromatic region; the solvent was acetone-d₆) ### 5,5-Diphenyl-3-butylhydantoin with Cl bonded at the N_1 position optimized at the B3LYP/6-311+G(2d,p) level of theory Stability toward repeated UVA light exposure of cotton coated with derivatized hydantoinyl siloxanes MM-Cl and PP-Cl (Cl+% remaining) following a series of rechlorinations ## Intramolecular photorearrangement of acyclic N-halamides (1,5-hydrogen atom transfer), the Hoffmann-Loeffler rearrangement $R_1 = R_2 = alkyl$ ## Possible photolytic rearrangements for 3-butyl-1-chlorohydantoin $$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$ %Transmittance The ¹H NMR spectra of (a) MMm and (b) UVA light-irradiated MMm-Cl; the solvent was CDCl₃ The ¹³C NMR spectra of (a), MMm and (b) UVA-light-irradiated MMm-Cl; the solvent was CDCl₃ #### GC/MS spectra of (a) MMm and (b) UVA-irradiated Transition structures at the UB3LYP/6-311++G(2d,p) theory level for the 1,6- and 1,5-hydrogen atom transfers between atoms (A) C_8 and N_1 and (B) C_7 and N_1 in the MMm radical; distances in angstroms Calculated bond dissociation enthalpy (BDE) for the N_1 -Cl bond in MMm-Cl and activation enthalpies, ΔH^{\ddagger} , for the 1,5- and 1,6-proton transfers in MMm radical^a | | BDE (N ₁ -Cl) | $\Delta \mathbf{H}^{\ddagger}$ (1,5-H) | ΔH^{\ddagger} (1,6-H) | |-----|--------------------------|--|-------------------------------| | MMm | 50.5 | 52.9 | 38.2 | ^a Enthalpies (in kcal/mol) computed at the UB3LYP/6-311++G(2d,p) theory level. 1,5-proton transfer between atoms C_7 and N_1 and 1,6-proton transfer between atoms C_8 and N_1 . Transition structure at the UB3LYP/6-311++(2d,p) theory level for the cleavage of the 7-chloro-5,5-diphenylhydantoin siloxane model (PPSi-Cl); distances in angstroms ## Loss of antimicrobial efficacy from the siloxane surface #### CONCLUSIONS - Phenyl derivatization at the 5-position on the hydantoin ring of an Nchlorohydantoinyl silane or siloxane weakens the N-Cl bond relative to that of the 5,5-dimethyl derivative. - The bond weakening is probably the result of a through-space interaction between the CI atom and the pi-electron system of the aromatic rings. - UVA degradation of the hydantoinyl siloxane is caused by homolytic rupture of the N-Cl bond, followed by hydrogen atom transfer from the alkylsilyl chain, resulting in chlorination on the chain, and subsequent cleavage of the hydantoinyl moiety from the surface. - This process which occurs gradually renders the surface incapable of rechlorination, and hence the gradual loss of antimicrobial efficacy. #### ACKNOWLEDGMENT This work was supported by the US Air Force.