

Antibacterial Melt Blown PP - g - NDAM Nonwoven

STAMP 2010 Sustainable Textiles and Medical Protection

Chao Liu¹, Xiangyu Jin¹, Gang Sun²

- 1. Engineering Research Center of Technical Textiles, Ministry of Education, College of Textile, Donghua University, Shanghai, China
- 2. Division of Textiles and Clothing, University of California, Davis, USA

- Face Mask classified by use:
 - ➤ Anti-dust face mask
 - ➤ Medical face mask
 - ➤ Anti-oil face mask

Face Mask Annual Output in China: 30 billions

Distribution of main face mask products

Medical Face Mask Classified by Structure

- Plane Mask
- Molded Mask

Fig.1 Molded Mask Structure

◆ Materials of Molded Medical Face Mask

	<u>4 layers</u>	Fibers fineness	Composition
	Outer layer: Spun-bond	16~20 μm	PP
	Interface layer: Melt Blowing	1.5~2 μm	PP
>	Skeleton layer: Needle Punching	14~25 μm	PET
	Inner layer: Spun-bond	16~20 μm	PP

Spun-bond

Melt blowing

Needle Punching

Antibacterial Medical Face Mask

◆ Nano Sliver Antibacterial Medical Face Mask

- Mechanism : Nano-silver damages the cell wall and genetic composition of bacteria
- Non-reusable
- Low Sterilizing Rate
- Short time use

Antibacterial PP-g-NDAM Medical Face Mask

- Active chlorine kill bacteria
- Active chlorine can be rechargable
- More stable antibacterial property
- High Sterilizing Rate
- Long time use

◆ Grafting Reaction of PP with NDAM

N- halamine precursor, 2, 4-diamino-6-diallylamino-1, 3, 5-triazine (NDAM)

Scheme 2. Reaction of PP with NDAM in reactive extrusion.

◆ Polymer Melt Blown Device

Melt Blown Forming

1st experiment*

- Melt blown Process
- Performance testing of raw materials
- **experiment*** Basic Property test
 - SEM

2nd & 3rd experiment*

- Melt blown process
- Basic Property test
- Fineness & Pore diameter test (for 3rd sample)
- Filtration test(for 3rd sample)
- SEM

Antibacterial test

- Content of active chlorine test (for the 3rd sample)
- Antibacterial property test (for the 3rd sample)

^{*} The PP-g-NDAM which used in experiment 1st ,2nd & 3rd were synthesized at different time.

PP - g - NDMA Melt Blowing Process

- 1-Polymer melt
- 2-Hot air
- 3-Inlet region
- 4-Orifice flow region
- 5-Swelling region

- Characters of Melt Blown Materials
- Superfine fibers: 1.5~2.5µm (Fig. 1)
- Randomized crossover arrangement of fibers
- Many curved channels (Fig. 2)
- Small pore diameter (Fig. 3)
- Fluffy structure

Fig. 2 Curved channels of melt blown

Fig.1 Fiber fineness of melt blown & spun-bond

Fig. 3 Pore diameter of melt blown & spun-bond

The 1st Experiment

Parameters of Melt blown process

- Spinning temperature : 300 ~ 350° C
- PP MFI 25
- Diameter of Orifice: 0.25mm
- length to diameter ratio of Screw Extruder: 35:1

Problems during Melt blown Process

- Easy to high-temperature degradation of NDAM
- Pungent odor of the fabrics
- Fabric are yellow
- Orifices blockage
- Filament breakage
- Shots in the fabric

Basic Performance

Content of modified pp(%)	10	20	30	40
Thickness(mm)	1.08	0.67	0.56	0.53
Weight (g/m²)	77.69	75.56	72.14	71.87
Tensile (N)	7.65	6.89	3.76	3.48
Elongation(%)	16.6	18.84	10.24	8.74

Tensile Strength (N)

Elongation %

Fabric Structure

- Parameters of Melt blown process
- ➤ Spinning temperature : 240 ~ 280° C
- > PP MFI 1500
- Diameter of Orifice: 0.25mm
- length to diameter ratio of Screw
 Extruder: 35:1

- ◆ Melt blown Process
- The 2nd experiment is better than
 the 1st

- ●The 3rd experiment is the best
 - ➤ Easy to forming
 - ➤ White fabric
 - ➤ Feel fluffy and smooth of the fabric
 - ➤ Non-pungent odor of the fabrics

The 2nd & 3rd Experiment

Fabric Structure

• Fibers Fineness

The 2nd & 3rd Experiment

Content of PP-g-NDAM (%)	30	40	60
Fibers Fineness (µm)	14.75 ± 10.06	3.61 ± 1.46	4.1±1.82

Basic Performance

The 2nd & 3rd Experiment

Content of PP-g-NDAM (%)	Thickness (mm)	Weight (g/m²)	Tensile (N)	Elongation (%)
40	0.91	44.47	8.5406	76.82
60	0.74	37.79	6.8974	73.88

18

The 2nd & 3rd Experiment

◆Pore Size Test

Instrumentation: Capillary Flow Porometer

Content of PP-g- NDAM (%)	Thickness (mm)	Mean Flow Pore Diameter(μm)	Bubble Point Pore Diameter(μm)
40	0.91	8.70	20.52
60	0.74	7.79	19.28

40% PP-g-NDAM
Nonwoven Engineering Dept. , Donghua University

◆Filtration Efficiency Test

Instrumentation: TSI8130

Particulate matter: Nacl

Particle diameter: 0.26um

Sample	Flow (L/min)	Respiratory resistance (mmH ₂ O)	Filtration efficiency (%)
Pure PP	32	1.81	35.16
40% pp-g-NDAM	32	1.1	30
60%pp-g-NDAM	32.1	1.33	28.77

Sample	Flow (L/min)	Respiratory resistance (mmH ₂ O)	Filtration efficiency after electret 30kv (%)
Pure PP	32	1.9	84.04
40% pp-g-NDAM	32	1.1	79.56
60% pp-g-NDAM	32.1	1.33	77.41

The 2nd & 3rd Experiment

- Mechanism of filtration
- Colliding
- Electrostatic adherence
- Inertial impaction
- Diffusion effect

Gravitational

Factors affect filtration efficiency

- ➤ Diameter of fibers
- ➤ Mean Flow Pore Diameter
- >Electret
- **≻**Thickness

- Respiratory resistance
- Medical respiratory resistance ≤35mmH₂O (GB2626-2006)
- ➤ Melt blown of Medical face mask respiratory resistance :1~6 mmH₂O

x500

Pure PP melt blown

Melt blown after nano coating

Resistance $5.4 \text{mmH}_2\text{O}$ $151.9 \text{mmH}_2\text{O}$ 99.92% 95.6%

Evaluation of Antibacterial Properties

Mechanism of Antibacterial PP-g-NDAM

Scheme 3. Simplified mechanism of biocidal polypropylene.

Evaluation of Antibacterial Properties

PP-g-DAM meltblown	extracted in acetone	washed in acetone	unwashed
60% PP-g-DAM	95.49	210.4	336.07
40% PP-g-DAM	87.65	185.04	209.32

Evaluation of Antibacterial Properties

Antibacterial result of cleaned samples

S.Auraus $(c=1x10^5)$

		x10 ⁰	x10¹	x10 ²	x10 ³	
40%	Control	8	86	10.5	2	61%
	S	8	65.5	6.5	0.5	
60%	Control	8	105	12.5	2.5	73%
	S	8	49.5	5	0.5	

E.Coli (c=3.0x10⁵)

		x10 ⁰	x10 ¹	x10 ²	x10 ³	
40%	Control	8	233.5	46	5.5	27%
	S	8	220.5	33.5	4	
60%	Control	8	275	68.5	6.5	69%
	S	8	218	24.5	1.5	

Standard: AATCC100

Conclusion

- The Melt-blown web forming technology of PP-g-NDAM is feasible
- Key technology: control of fiber fineness distribution and fiber web evenness, besides, electret processing can increase filtration efficiency without increasing respiratory resistance
- Anti-bacterial mask has a broad market prospect.
- Control the spinning temperature of melt blown process
- Raw material affects the property of modified PP fabric
- The best property: 60% PP-g-NDAM
- The grafting ration affects the antibacterial

Prospect

- Optimize Melt Blown Technology
- Decrease the temperature of melt blown technology
- Decrease Fiber fineness ≤2µm
- Increase Filtration of Melt Blown Materials > 90%
- Improve the mechanical properties

- Antibacterial Properties
- Improve the grafting ration of PP and NDAM
- Increase Antibacterial rate ≥99.9%

Realizing industrialization of face mask

The End

Thank you!